

Parametric Optimization for PEM Fuel Cells based on Numerical Simulation 利用數值模擬進行燃料電池參數最佳化

鄭 金 祥 國立成功大學航太工程系

Chin-Hsiang Cheng, Professor Department of Aeronautics and Astronautics National Cheng Kung University

Outline

- Introduction
- Inverse Theory
- PEM Fuel Cell Modeling & Experiments
- PEM Fuel Cell Optimization
- Concluding Remarks

Power and Light

Introduction

民國96年台灣地區能源分配:

Introduction

(經濟能源局統計資料)

					- 単位	[公末田畠重
能源類別	袍	≣ 	自產	能源	進 🗆	能源
	數 量	分配比(%)	數 量	分配比(%)	數 量	分配比(%)
總計	146,237,480	100.00%	2,495,296	1.71%	143,742,184	98.29%
煤炭及煤產品	47,004,652	32.14%	0	0.00%	47,004,652	32.14%
原料煤	3,698,034	2.53%	0	0.00%	3,698,034	2.53%
燃 料 煤	42,876,055	29.32%	0	0.00%	42,876,055	29.32%
煤產品	430,563	0.29%	0	0.00%	430,563	0.29%
石油	74,749,980	51.12%	17,778	0.01%	74,732,202	51.10%
原油	57,491,122	39.31%	17,778	0.01%	57,473,344	39.30%
石油產品	17,258,858	11.80%	0	0.00%	17,258,858	11.80%
液化天然氣	11,935,402	8.16%	0	0.00%	11,935,402	8.16%
天然氣	412,204	0.28%	412,204	0.28%	0	0.00%
水力發電	2,065,314	1.41%	2,065,314	1.41%	0	0.00%
核能發電	10,069,928	6.89%	0	0.00%	10,069,928	6.89%

四月 月子 日子

Introduction

Introduction

Influential Parameters

• Operation:

Cell Temperature, Packing Pressure, Contamination,

- **Bipolar Plates-Fuel Channels:** Channel Pattern, Channel Width Ratio, Cross-Sectional Shape, Electric Conductivity, Thermal Conductiviy,
- Fuels Fed at Anode & Cathode: Fuel Inlet Temperature, Inlet and Outlet Pressures, Composition, Humidity,

• Gas Diffusion Layers:

Characteristics of Porous Material, Thickness, Electric Conductivity,

• Catalyst Layers:

Characteristics of Porous Material, Pt Loading, Thickness, Electric Conductivity, Electro-Chemical Characteristics,

• Membrane:

Characteristics of Porous Material, Thickness, Proton Conductivity, Water Content,

Introduction

Optimal Design

Direct Problem (Forward Problem)

Causes history boundary conditions

properties & coefficients geometry

performance thermal behavior flow pattern stress & strain

Effects

Inverse Problem (Backward Problem)

Causes

history boundary conditions properties & coefficients geometry

performance thermal behavior flow pattern stress & strain

Effects

Inverse Heat Transfer Problems (IHTPs)

Retrospective inverse problem – history

Boundary inverse problem – boundary conditions

Coefficient inverse problem – properties & coefficients

Geometric inverse problem – geometry

Structure of Optimizer

SCGM Method

Inverse Theory

Variables updated
$$A_k^{n+1} = A_k^n - \beta \cdot \xi_k^n$$

Search direction
$$\xi_{k}^{n} = \frac{\partial J^{n}}{\partial A_{k}} + \gamma_{k}^{n} \cdot \xi_{k}^{n-1}$$

Conjugate-gradient $\gamma_{k}^{n} = \left[\left(\frac{\partial J}{\partial A_{k}} \right)^{n} / \left(\frac{\partial J}{\partial A_{k}} \right)^{n-1} \right]^{2}$

Step size
$$\beta_k^n = 0.01 \sim 0.001$$

Source: Chang, M.H. and Cheng, C.H., "A Simplified Conjugate-Gradient Method for Shape Identification Based on Thermal Data", *Numerical Heat Transfer* B, **43**, 489-507, 2003.

Identification of Heating Chips in MCM Packages

Inverse Theory

Optimal Design for Heat Sink Modules

Inverse Theory

Source: <u>http://www.cooljag.com</u> (courtesy of COOLJAG, Inc.)

Identification of Fouling Layer in Pipes

Inverse Theory

- Modeling gives a sufficient amount of detailed information that is not easily obtained by the experiments.
- Modeling costs much lower.
- Modeling can be readily integrated with numerical optimizer for design of fuel cells.

PEM Fuel Cell Modeling & Experiments

Transport Phenomena in PEMFC

PEM Fuel Cell Modeling & Experiments

- 1. Anode Gas Flow
- 2. Gas Transport
- 3. Electrochemical Reaction
- 4. Proton Transport
- 5. Electron Conduction
- 6. Water Transport
- 7. Water Transport
- 8. Two Phase Flow
- 9. Heat Transfer (Conduction and Convection)

Two-Dimensional Single Cell Full Model

PEM Fuel Cell Modeling & Experiments

ABP

AGDL

ACL MEM

CCL

CBP

CGDL

元智大學燃料電池中心 2008年6月6日

b

a

AFC

CFC

Two-Dimensional Single Cell Full Model

PEM Fuel Cell Modeling & Experiments

Three-Dimensional Single Cell Full Model (a)

PEM Fuel Cell Modeling & Experiments

Three-Dimensional Single Cell Full Model (a)

PEM Fuel Cell Modeling & Experiments

Three-Dimensional Single Cell Full Model (b)

02 0.18

0.18-

0.17-

016-

0.15-

0.14-

013-

0.12

0.12

PEM Fuel Cell Modeling & Experiments

(a)直通型

(b)蛇型流道

(b)蛇型流道

(a)直通型

Jcx_r - A/m2

3800-3600-

3400-3200-

3000-2800-

2600-

2400-

2200-

2000-1800-

1800

(b)蛇型流道

(c)指叉型

Three-Dimensional Stack Full Model

PEM Fuel Cell Modeling & Experiments

Three-Dimensional Stack Full Model

PEM Fuel Cell Modeling & Experiments

Three-Dimensional Stack Full Model

PEM Fuel Cell Modeling & Experiments

Parametric Study – channel width fraction

 $V_{o}=0.7V$, $\varepsilon_{GDL}=0.5$, $\varepsilon_{V,Cat}=0.112$, $\varepsilon_{N,Cat}=0.3$, $H_{Channel}=1mm$, $t_{GDL}=300 \ \mu m$, $t_{Cat}=10 \ \mu m$, $t_{Mem}=178 \ \mu m$.

Parametric Study – channel depth

 V_0 =0.7, Λ =0.5, ε_{GDL}=0.5, ε_{V,Cat}=0.112, ε_{N,Cat}=0.3, t_{GDL}=300 μm, t_{Cat}=10 μm, t_{Mem}=178μm.

Parametric Study – porosity of GDL

V_o=0.7, Λ =0.5, H=1mm, $\varepsilon_{V,Cat}$ =0.112, $\varepsilon_{N,Cat}$ =0.3, t_{GDL} =300 μm, t_{Cat} =10 μm, t_{Mem} =178μm.

Parametric Study – thickness of GDL

V_o=0.7, Λ =0.5, H=1mm, $ε_{V,Cat}$ =0.112, $ε_{N,Cat}$ =0.3, $ε_{GDL}$ =0.5, t_{Cat} =10 μm, t_{Mem} =178μm.

Parametric Study – porosity of catalyst layer

V_o=0.7, Λ=0.5, H=1mm, ε_{N,Cat}=0.3, ε_{GDL}=0.5, t_{Cat} =10 μm, t_{GDL} =300 μm, t_{Mem} =178μm.

Parametric Study – volumetric fraction of Nafion loading

V_o=0.7, Λ=0.5, H=1mm, $\varepsilon_{V,Cat}$ =0.112, ε_{GDL} =0.5, t_{Cat} =10 μm, t_{GDL} =300 μm, t_{Mem} =178μm.

PEM Fuel Cell Optimization

Iterative Regularization Method

Designed variables: Λ , t_{GDL} , h, ... Objective function: $J = 1/(I \ge V)$ (minimized) Direct Problem Solver: CFD ACE+ Sensitivity Analysis: Direct differentiation Optimization Process: SCGM method

PEM Fuel Cell Optimization

PEM Fuel Cell Optimizer

PEM Fuel Cell Optimization

Optimal Design

PEM Fuel Cell Optimization

2. PEM Fuel Cell Channel Width Optimization

PEM Fuel Cell Optimization

2. PEM Fuel Cell Channel Width Optimization

PEM Fuel Cell Optimization

3. Micro-reformer Channel Width Optimization

4. Non-destructive Method for **Determination of Internal Temperature** Distribution

PEM Fuel Cell Optimization

Temperature measurement points on outer surface of end plate

4. Non-destructive Method for Determination of Internal Temperature Distribution

PEM Fuel Cell Optimization

Thank you !

Email: chcheng@mail.ncku.edu.tw

Website: http://www.iaa.ncku.edu.tw/~cheng/